
Nbench    2.0        Aug. 1995

Overview
Main Menu
Setup Dialog
Technical Notes

Freeware
Nbench may be freely used and redistributed as long as no fee is charged.
Normal copyright protection remains otherwise unabridged.

Disclaimer
Nbench is not guaranteed to be safe or suitable for your intended purposes.
If you report a problem, however, I will try to correct it.

Michael Cornelison

CompuServe 76450,2336
Internet mico@ix.netcom.com
phone (610) 712-6185

Overview

There are two types of PC benchmark utilities commonly available. One type measures the
performance of an entire PC system, by measuring the elapsed time to complete a set of
application tasks that represent a work profile. A second type measures more basic
components of performance, namely processor, graphics IO, and disk IO speeds.

Application-based benchmarks are valid tools to measure the performance of a whole computer
system, for the specific application set included in the benchmark. However, they may not be
valid predictors of performance with other applications. Also, such benchmarks provide little
insight into which parts of the system perform well or poorly. These benchmarks are primarily
useful if you are purchasing a complete system, configured the same way as in the benchmark,
for the purpose of running the same applications used in the benchmark.

The second type of benchmark, which makes separate measurements of processor, graphics,
and disk performance, also has its limitations. The reported processor performance is likely
some unknown mix of CPU, chipset, cache, and main memory performance. Thus, you may
not know if a given benchmark is a good indicator of the performance you would see with your
intended usage. There have been some notable problems in this area, particularly benchmarks
that fit entirely within L1 (or L2) cache, and therefore provide no indication of L2 cache (or main
memory) performance. Some benchmarks measure disk performance mixed-up with OS-
based file caching, and may even be sensitive to OS parameters adjustable by the user. If
small files are used, rotational latency may dominate the results, whereas if large files are used,
disk and adapter throughput may dominate.

Nbench tries to address these problems. Each of the following performance components can
be measured separately from other factors:

- CPU integer and floating speeds
- L1 and L2 cache speeds
- main memory speed
- disk read and write speeds

Nbench can report each of the above components of performance for 1-20 separate execution
threads. Thus, it is possible to study the performance of multi-CPU hardware systems and
multitasking operating systems. If a system has N CPUs, it should ideally be able to run N
CPU test (or memory test) execution threads, in about the same amount of time as for one
thread. Any slowdown in CPU test results are likely due to operating system task switching
overhead, and any slowdown in memory test results are likely due to cache or memory
bandwidth limitations, as well as operating system task switching overhead. If a system has
one CPU, the throughput for each of N threads should ideally be 1/N of the throughput for one
thread. Any slowdown is likely due to operating system task switching overhead.

When running memory tests, be careful not to place such demands on total memory that the
system starts to page itself to death. This is not what you want to measure. To be valid,
memory testing should be largely absent of disk activity. Pay attention to the thread count and
your maximum memory region size: their product should not exceed the physical memory
available for user applications. If an initial memory test causes paging activity, a repeat of the
same test may show little or no paging activity, and will give a more valid result.

Nbench runs on the Windows NT 3.5 and Windows 95 operating system, and should also run
OK with later versions of these systems.

Main Menu

The following menu commands are available from the main window:

Quit quit the application
Clear erase report output from window
Setup go to parameter setup dialog
Run dropdown menu with following 3 entries:
        Processor perform CPU tests
        Memory perform memory tests
        Disk I/O perform disk I/O tests
Save save report output to a file
Help display help file

To run the benchmark tests, do the following: select setup and enter any desired changes in
setup parameters, select run and then select one of the three benchmark tests (processor,
memory, or disk). The test results are written into the main window within a few seconds.
These reports will accumulate, until you select clear to erase them from the window. Use save
to save the reports to a text file. Use quit to exit the application. If you select a menu
command while a test is running, the current test will be interrupted and the new command
executed. If you select a thread count greater than 1 in the setup dialog, the results are
reported separately for each thread.

Setup Dialog

 

Use this dialog to change benchmark parameters. Refer to the table below. Use tab or
shift+tab to navigate forward or backwards through the parameters. Use the backspace key to
erase, and the numeric keys to enter new values. Click OK when done, or cancel to abandon
the updates and keep prior values. If the cursor jumps back to a prior field with a beep or bell,
it means you have entered a bad value.

parameter range description

CPU times 1-99 secs. minimum test time durations

memory region
sizes

1-9999 KB sizes of memory regions to be used for
cache and memory tests

disk file size 1-999 MB size of disk file for disk I/O test

thread count 1-20 no. of simultaneous execution threads

Use CPU time durations of a few seconds or more to insure consistent results. The actual test
times may be extended for memory tests, if the required minimum byte counts have not been
moved within the specified test times.

Use memory region sizes appropriate for the L1 and L2 cache sizes of your system. For

example, if your system has a 4 KB L1 data cache, then a region size of 4 KB or less is
effectively a test of L1 cache throughput. If you have a 256 KB L2 cache, then a region size of
256 KB or less is effectively a test of L2 cache throughput. The program loop is small enough
to fit within the L1 cache, if your system has both L1 and L2 cache (true if your CPU is a 486 or
later). To test main memory throughput, use a region size that is much greater than your L2
cache size (e.g. 2000 KB for an L2 cache of 256 KB).

Up to four memory region sizes can be specified, for running up to four memory tests in
succession. If you want fewer tests, set one or more region sizes to zero.

Use a disk file size large enough to give consistent results. In order to make seek time and
rotational latency become insignificant, this should be 2 MB or more.

If you select the set disk button, the following dialog box will appear:

 

Here you may input the disk drive letters to be used for disk I/O test files. Enter one letter for
each execution thread. For example, if you have three threads, and you wish them to use
drives c, d, and e respectively, then enter cde into the dialog text box.

Technical Notes

Here are examples of each type of report, with explanatory comments following.

Processor Performance Report

CPU Performance, MOPs/sec
 Integer Speed: 72.2
Floating Speed: 15.1

The integer performance test is a heapsort program which continuously re-sorts a set of 1000
random integers. Since both the program and the data fit within the L1 cache, it is a test of
processor speed under the best conditions. The units are approximate millions of operations
per second. An operation (from the viewpoint of C source code) is an assignment, comparison,
arithmetic operation, array index calculation, or function call (with an additional operation
counted per passed argument).

The floating performance test is a small loop of floating (double) calculations with the following
ratios: add: 11 subtract: 2 multiply: 9 divide: 2
There is no array indexing in this test, so that floating arithmetic performance is the primary
thing being measured. The code is impossible for the compiler to optimize by consolidating
operations or moving them outside the loop.

Memory Performance Report

Memory Move Performance, MBytes/sec

memory access access method
region width random serial
 1KB 1 45.7 57.9
 1KB 2 38.7 41.7
 1KB 4 172.7 222.7
 1KB 8 255.2 255.2
 10KB 1 20.1 29.0
 10KB 2 30.5 37.1
 10KB 4 79.0 112.8
 10KB 8 122.2 122.2
 100KB 1 9.6 16.1
 100KB 2 19.0 29.5
 100KB 4 38.3 54.6
 100KB 8 56.0 56.0
1000KB 1 4.6 10.4
1000KB 2 9.4 19.1
1000KB 4 18.6 32.1
1000KB 8 34.2 34.2

Each memory region size is tested for both random and serial moves, using aligned operands of
1, 2, 4, and 8 bytes. A little study of the above will reveal that the L1 cache throughput is about
255 MB/sec for 8 byte operands, the L2 cache is about 56 MB/sec, and the main memory is
about 34 MB/sec . Sequential access is significantly faster than random for 1, 2, and 4 byte

access, but 8 byte access shows no difference. This indicates that all memory accesses are 8
bytes, and that the upper 4 bytes are cached when the lower 4 bytes are accessed. Keep in
mind that these numbers are for memory moves (read + write to new location), so 34 MB/sec
actually represents a total memory bandwidth of about 68 MB/sec.

Disk Performance Report

Disk Performance, MBytes/sec
File size: 10.0 Mbytes
thread: 0 1 2
write: 1.91 1.66 1.79
read: 1.92 1.95 1.80

What is measured is the I/O throughput for a file written and read sequentially, from the
beginning to the end. Note that disk seek and rotation times are not being measured, and
normally should not influence the results. If your disk is badly fragmented, the measured speed
will be reduced, since the file will be created in many discontiguous pieces. If this is
happening, you should be able to hear the disk drive clattering as the file is being read. Do not
consider the results to be valid unless the clattering during read is a low fraction of the total
time. Some clattering will occur as the file is being written (created), since the OS must
allocate the necessary storage space. The file is created with the attribute
FILE_NO_BUFFERING, so that the OS will not cache the file, and all I/O will go directly
between the application buffer and the disk. Thus, there should be no misleading speedup
from OS caching, even if the file is quite small.

If more than one thread is used, be sure that each thread uses a different physical disk drive.
Otherwise, the constant seeking between multiple files being accessed on one drive will cause
lower performance to be reported. This may be OK if your intent is to measure drive
performance under such conditions.

Known Problems

Under NT, if a test is repeatedly interrupted before completion (by selecting a new menu
command), there is a small memory leak that causes the Nbench process page file
allocation to grow. This is apparently a problem with the use of TerminateThread().
There is no usage of new or malloc in the thread functions that could cause this. You
should not interrupt and restart a test hundreds of times. Instead, exit and restart
Nbench.exe.

When many threads are used, the OS may not allocate resources evenly. I have seen
instances where one thread would be completed while another one would be barely
started. This is erratic and follows no obvious pattern. Sometimes there is no
problem, and all threads run very evenly and finish at nearly the same time.

I was able to crash Windows 95 (pre-release 2) by running more than 10 threads in a
disk test. NT had no problems up to the program limit of 20 threads.

